

ACTIVIDAD CURRICULAR DE FORMACIÓN

Facultad o Instituto :	Ciencias de la Ingeniería
Carrera :	Ingeniería Civil Informática

I. IDENTIFICACIÓN DE LA ACTIVIDAD CURRICULAR

Nombre	:	Computación Numérica					
Código	:	INF-321	INF-321				
Semestre lectivo	:	VI Semestre	VI Semestre				
Horas	:	Presencial:	Presencial: 72 Autónomas: 48 TOTAL: 120				20
Créditos SCT	:	4					
Duración	:	Trimestral		Semestral:	X	Anual:	
Modalidad	:	Presencial: x Semi-presencial: A Distancia:					
Á 1 E ''		D: : 1:		General: Profesional: Práctica:			
Área de Formación	:	Disciplinar:	X				
Pre-requisito (Si los		Ecuaciones Diferenciales					
hubiese)	•						

II. DESCRIPCIÓN Y CARACTERIZACIÓN DE LA ACTIVIDAD CURRICULAR

La actividad curricular de Computación Numérica, se desarrolla en el sexto semestre del Plan de estudios, pertenece al área curricular de Formación Disciplinar, al ciclo inicial y es de carácter teórico-aplicada.

En particular, se pretende que el estudiante sea capaz de entender los métodos en forma algorítmica, comprender su justificación matemática y evaluar su precisión, eficiencia y confiabilidad con el objeto de apreciar en forma crítica tanto sus ventajas como sus limitaciones, como también disponer de una batería de métodos no tradicionales.

La metodología utilizada será con clases expositivas-participativas, laboratorios con apoyo de software, aprendizaje colaborativo, aprendizaje basado en problemas, aprendizaje en base a resolución de problemas y apoyos.

La evaluación será a través de pruebas escritas, informes de talleres, actividades de laboratorio y resolución de problemas.

III. COMPETENCIAS DEL PERFIL DE EGRESO ASOCIADAS A LA ACTIVIDAD CURRICULAR.

III.1 COMPETENCIAS PROFESIONALES.

COMPETENCIA	SUBCOMPETENCIA
Resolver problemas en el ámbito de la ingeniería, aplicando conocimientos de ciencias	

básicas; con pensamiento crítico y capacidad analítica.	
Aplicar conocimientos de ciencias de ingeniería y ciencia de la computación en el ámbito profesional, utilizando pensamiento crítico y capacidad analítica.	Resolver problemas usando algoritmos, modelos de computación y ciencias de la ingeniería.
Diseñar soluciones tecnológicas que involucren la integración de software y hardware para la interconectividad entre sistemas informáticos	Analizar problemas tecnológicos integrando arquitecturas locales de procesamiento.

III.2 COMPETENCIAS GENÉRICAS.

COMPETENCIA	SUBCOMPETENCIA	
Demostrar coherencia ética entre sus postulados	Actuar comprometido con los derechos	
valóricos y sus acciones, respetando los	humanos, y participa con responsabilidad ciudadana en los distintos escenarios, formales	
derechos humanos y participando activamente en las organizaciones comunitarias, haciendo	e informales, de la comunidad.	
primar la responsabilidad social desde una	e informates, de la comunidad.	
perspectiva cristiana.		
Realizar investigaciones que contribuyan al	Responder con iniciativa a problemáticas de	
desarrollo del conocimiento científico y	investigación orientadas a su especialidad	
aplicado, en el contexto propio de su proceso		
formativo.		
Comunicar ideas, tanto en la lengua materna	Comunicarse de forma escrita en la lengua	
como en el idioma inglés, haciendo uso de las	materna e inglés de acuerdo a lenguaje	
tecnologías de la información para	académico-profesional haciendo uso de las	
desenvolverse en diversos escenarios, dando	tecnologías de la información en contextos	
soluciones a diversas problemáticas de la	propios de su profesión.	
especialidad.		

IV. RESULTADOS DE APRENDIZAJE-APRENDIZAJE ESPERADO.

RESULTADOS DE APRENDIZAJES

- 1.- Comprender la naturaleza de los errores numéricos en dispositivos de cálculo, considerando la investigación como estrategia de identificación de problemas.
- 2.- Aplicar métodos numéricos para la resolución de ecuaciones trascendentes, demostrando un comportamiento ético.
- 3.- Resolver problemas aplicados donde se maneja gran cantidad de datos, formalizándolos a partir de informes científicos en español o inglés de acuerdo a pautas establecidas.
- 4.- Aplicar la diferenciación e integración numérica para resolver problemas de la ingeniería modelados por ecuaciones diferenciales.

V. UNIDADES DE APRENDIZAJE Y EJES TEMÁTICOS

R. AP.	UNIDAD	EJE(S) TEMÁTICO(S)
	Introducción a la aritmética del Computador.	Introducción histórica. Conceptos básicos del Análisis Numérico.
1		Representación de los números en dispositivos de almacenamiento.
		Aritmética de punto flotante. Análisis y propagación del error. Manejo en dispositivos de cálculo.
	Iteración funcional para ecuaciones.	Repaso de conceptos básicos del cálculo diferencial. Método de la bisección. Iteración funcional.
		Teoremas globales de punto fijo. Teorema local de convergencia. Error y orden de convergencia. Aceleración de la convergencia.
2		Método de Newton-Raphson y sus modificaciones. Método de la secante y otros. Comparación de los distintos métodos. Generalidades.
		Raíces múltiples. Algoritmo de Horner. Acotación y separación de raíces de un polinomio Métodos usuales de resolución de ecuaciones polinómicas.
		Determinación de factores cuadráticos.
	Sistemas de ecuaciones de interpolación.	Métodos directos de resolución de sistemas de ecuaciones lineales. Estrategias de pivoteo.
		Método de Gauss y Gauss-Jordan. Métodos indirectos o iterativos: Jacobi, Gauss-Seidel y otros. Métodos de relajación y métodos particulares.
3		Introducción de resolución de sistemas no lineales.
		Interpolación polinomial por el método de Lagrange. Esquema de diferencias divididas.
		Interpolación polinomial por el método de Newton.

		Aproximación de mínimos cuadrados.
	Resolución numérica de ecuaciones diferenciales.	Deducción de fórmulas de diferenciación numérica. Ordenes de convergencia.
4		Integración numérica aplicada a problemas de interpolación.
		Fórmulas de Newton-Cotes, Trapecio y Simpson compuestas. Error de truncamiento.
		Solución numérica de problemas de valor inicial para ecuaciones diferenciales ordinarias.

VI. ESTRATEGIAS DE ENSEÑANZA-APRENDIZAJE

En las clases se entregarán elementos teóricos de los contenidos, ejemplificando (con problemas reales de la ciencia y la ingeniería) y motivando espacios de preguntas y alternativas de respuestas por parte de los estudiantes.

Algunas estrategias de enseñanza - aprendizaje que se utilizarán son:

- Clases expositivas
- Talleres individuales y grupales
- Ejercitación asistida
- Ejercitación autónoma
- Aprendizaje Basados en Problemas (ABP)
- Resolución de problemas
- Trabajos de investigación

VII. PROCEDIMIENTOS DE EVALUACIÓN DE APRENDIZAJES.

RESULTADO DE APRENDIZAJES	INDICADORES	INSTRUMENTO Y/O TÉCNICA EVALUATIVA	PONDERACIÓN (%)
	Aplica correctamente la aritmética de punto flotante.	Prueba escrita 1/Pauta Trabajo grupal/Rúbrica	15%
1	Determina errores de propagación en operaciones.	grupai/Kubrica	
	Maneja dispositivos de cálculo, entendiendo la		

	representación y operatoria de los números.		
	Utiliza software de apoyo.		
	Utiliza la investigación en la determinación de problemas de aplicación.		
	Aplica métodos de	Prueba escrita 2/Pauta	200/
	localización de raíces.	Trabajo	20%
	Prueba la existencia de un método de punto fijo. Establece la convergencia de algoritmos iterativos.	grupal/Rúbrica	
2	Aplica métodos numéricos para la búsqueda de raíces de ecuaciones según las propiedades de estas.		
	Elabora informes de acuerdo a pautas establecidas.		
	Demuestra un comportamiento ético.		
3	Aplica estrategias de pivoteo.	Prueba escrita 3/Pauta	20%
	Establece la convergencia de métodos iterativos en la resolución de sistemas de ecuaciones.	Trabajo grupal/Rúbrica	
	Aplica métodos iterativos en la resolución de sistemas de ecuaciones.		
	Aplica métodos de interpolación de datos.		
	Construye y/o ajusta modelos polinomiales para modelar registros dados.		
	Elabora informes en español o inglés de acuerdo a pautas establecidas.		

4	Aplica métodos de derivación	Prueba escrita 4/Pauta	
	numérica.		15%
		Trabajo	
	Aplica métodos de integración	grupal/Rúbrica	
	numérica.		
	Resuelve numéricamente		
	problemas aplicados a la		
	ingeniería con EDO de orden		
	superior.		
	Todoslos aspectos vistos en el	Prueba Acumulativa	30% del total
	semestre	Final/Pauta	

VIII. RECURSOS DE INFRAESTRUCTURA

Sala, Aula Activa, Laboratorios de Computadores, Computadores con internet, proyector multimedia, Biblioteca, Sistema LMS-UCM.

IX. RECURSOS BIBLIOGRÁFICOS

	Autor, Título, Editorial, Año de Edición	Biblioteca donde se encuentra	N° Libros Disponibles
BÁSICA	-R.L.,Burden. y J.D. Faires, Análisis Numérico., Ed. iberoamericana, 1985. -Richard W. Hamming.Numerical		
OBLIGATORIA	Methods for Scientists and Engineers (Dover Books on Mathematics). Dover publications; 2 edition. 1987.		
COMPLEMENTARIA	-Chapra, y R.P. Canale,Métodos Numéricos para Ingeniero. McGraw-Hill, 1999.		
	-J.H. Mathews y K.D. Fink, Métodos numéricos con MATLAB., Prentice Hall, 2000		

X. OTROS RECURSOS

Nombre Recurso	Tipo de Recurso
OCTAVE, DERIVE, MATLAB	Programa computacional